experiment: dataset: movielens_small data_config: strategy: dataset dataset_path: ../data/{0}/dataset.tsv side_information: - dataloader: ItemAttributes attribute_file: ../data/{0}/item_features.tsv splitting: save_on_disk: True save_folder: ../data/{0}/splitting/ test_splitting: strategy: temporal_hold_out test_ratio: 0.2 top_k: 10 evaluation: cutoffs: 10 simple_metrics: [nDCG, Recall, HR, Precision, MAP, MRR] gpu: -1 external_models_path: ../external/models/__init__.py models: Random: meta: save_recs: True MostPop: meta: save_recs: True AttributeItemKNN: meta: save_recs: True save_weights: True verbose: True neighbors: [15, 30, 60, 100] similarity: [cosine, correlation] VSM: meta: save_recs: True save_weights: True verbose: True similarity: [cosine, correlation] user_profile: [tfidf, binary] item_profile: [tfidf, binary]