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Abstract

We examine editors’ influence on the scientific content of academic journals by unpacking the

role of three major forces: journals’ missions, aggregate supply of and demand for specific topics,

and scientific homophily via editorial gatekeeping. In a sample of top biomedical journals, we

find that the first two forces explain the vast majority of variation in published content. The

upper bound of the homophily effect is statistically significant but practically unimportant.

Marginal editorial changes thus likely do not meaningfully impact journals’ content in the short

run. However, we do not rule out persistent or pervasive frictions in the publication process.
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“...journal editors say that they are not tally clerks and that decisions to

publish are theirs, not the reviewers’...”

— Altman, L.K. (2006). For Science’s Gatekeepers, a Credibility Gap.

The New York Times.

Because publications are the prime currency in science, editors of academic journals have the

potential to influence the allocation of research grants (Ginther et al. 2018), career trajectories (Way

et al. 2017), downstream inventions (Bryan and Ozcan 2021), and consumer behavior (Oster 2020).

Against this backdrop, it has long been noted that premier scientists may generate distortions

in the diffusion of knowledge because of their own experiences, preferences, and beliefs (Merton

1973; Dasgupta and David 1994; Stephan 1996). However, in the case of journal editors, these

individuals are still subject to institutional and market forces such that the potential magnitude of

any distortions due to “gatekeeping” remains unclear.

Typically, the concern is that gatekeepers can create inefficient or inequitable levels of

homophily, conferring greater benefits to those with whom they share interests and affiliations. We

focus on this concern by identifying the extent to which editors induce scientific homophily at a

sample of top biomedical journals.1 We test how the distribution of research topics published in a

journal covaries over time with the distribution of research topics pursued by the journals’ editors.

A long history of empirical work has found evidence suggestive of homophily at academic

journals (e.g., Crane 1967; Zuckerman and Merton 1971). However this work focuses mostly on

social connections, not scientific content, and it has been unclear whether this homophily reflects (1)

the fact that journals have specific missions that reflect a persistent preference for certain topics, (2)

aggregate trends in the supply of and demand for certain topics, or (3) editorial gatekeeping per se.

Our empirical analyses focus on disentangling these three forces – which we refer to as

“missions” (journals’ stable revealed preferences), “markets” (aggregate supply and demand shifts),

and scientific homophily – by evaluating how the natural churn of editors at fifteen top biomedical

journals affects the content published in those journals. We focus on variation in editors’ idiosyncratic

research backgrounds and identify a plausible upper bound of how much editors may steer journals

towards the topics that they themselves have studied. We examine publishing in the biomedical

sciences for two reasons. First, biomedical research is an especially important sector of the economy,

and one in which the precious few slots in top journals for featuring research projects may have

1Another large concern is related to the equity of the distribution of opportunities across, for example, genders,
socioeconomic status, or institutional affiliations. Data limitations in our setting prevent us from these sort of
investigations. For work focusing on the economics discipline, see Laband and Piette (1994), Card et al. (2020), or
Carrell et al. (2020) and references therein.
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significant downstream impact.2 Second, this setting allows us to use validated topic modeling tools,

which we supplement with new hand-collected data on editor tenures.

Our findings align with prior research in that we estimate a statistically significant homophily

effect. As the share of editorial experience in a topic increases, so too does the share of the journals’

publications on that same topic. We cannot separate how much of this effect is due to the supply of

submissions (by authors) versus the selection thereof (by editors). Instead, we take our estimate

as an upper bound of the net effects of these forces, which is relevant for predicting the effect of

policies that affect editorial turnover (e.g., tenure limits). We believe this upper bound is informative

because, despite the prevalence of narratives asserting that “certain editors only like certain types

of papers,” there is little prior empirical evidence on the practical magnitude of such an effect.

Still, while we can reject a null hypothesis of no scientific homophily, the role of such

gatekeeping is dwarfed by the importance of the mission- and market-based forces. The homophily

effect typically explains less than three percent of the variation in published content that is not

already explained by missions and markets. Conversely, missions and markets often explain anywhere

from forty to eighty percent of the variation in published content that is not explained by scientific

homophily. This pattern holds through a battery of robustness tests and alternative specifications.

To better understand the practical implications of our point estimates, we perform a series

of simulations we refer to as “editorial takeovers.” We simulate the replacement of editors at one

journal with those from another, and use our estimates of the homophily effect to predict how

much closer (in terms of topics published) these editor replacements and the ensuing associated

gatekeeping might bring two journals. This exercise indicates that, even within our diverse sample,

non-trivial changes in the composition of an editorial board would not meaningfully alter journals’

scientific content.

Despite being in a very different setting, our analysis is related to work in media markets that

investigates how much of the slant in newspapers is due to ownership’s preferences versus other

factors such as readers’ demand (e.g., Glasser et al. 1989; Gentzkow and Shapiro 2010). In a similar

vein as Gentzkow and Shapiro (2010), our results show that the vast majority of the variation in

slant is driven by the pull of the readership as opposed to owners pushing their own agendas.

Overall, the effect sizes we identify across our analyses lead us to conclude that, at least

when it comes to understanding the scientific content of these top journals, concerns over editors

having idiosyncratic, homophilic preferences for certain types of scientific content are likely not of

large-scale policy relevance.3 However, we cannot test whether or not certain topics go unpublished

because all editors “dislike” those topics; our results do not rule out persistent or pervasive frictions

in the peer-review or editor selection. We highlight these and other limitations of our approach

throughout, and consider the implications of our findings for future work in the Discussion.

2For evidence on the role of older, elite scientists exhibiting gatekeeper-like control over research fields, see Azoulay
et al. (2019).

3In other words, it appears much more important to worry about which journal one submits one’s paper to instead
of worrying about which editor at the journal might handle the paper.
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1 Background, Data, and Summary Statistics

1.1 Biomedical Research Publishing and Editors

The publication process in biomedical sciences follows most of the contemporary norms for peer-

reviewed academic work.4 In general, new editors are selected by existing editors. The New England

Journal of Medicine (NEJM ), which is included in our sample of journals and is one of the oldest

and most prestigious biomedical journals, provides a helpful summary of editor selection and their

duties:

“...editors are chosen for their expertise in major areas of medicine. Associate editors play central roles

in managing the peer review process and in decisions to accept or decline manuscripts for publication

in NEJM. In addition to their work for NEJM, they also hold full-time positions at academic medical

centers.”

Editorial responsibilities can roughly be categorized into three parts: selection of which

submissions to advance to peer-review; selection of reviewers; and publication decisions given

reviews. All of these choices are mechanisms through which editors can influence the content of

their journals. As we describe below, we focus only on editors at these journals who have previously

published papers themselves; this necessarily excludes any non-scientific editorial positions from our

analyses (e.g., copyeditors).

1.2 Sample of Top Biomedical Journals

Appendix A describes how we constructed our sample of fifteen top biomedical journals, which span

a range of general and specialized disciplines and are listed in Panel (a) of Table 1 and described in

further detail in Table A.1. On average, we have about 30 years of data per journal. Since our data

collection efforts centered on 1985 as the earliest year, we use that year as the earliest date for all of

our main analyses. The average tenure length for all editors in our sample is 7 years (s.d.=7 years),

and, because of the skewness in tenure lengths, the average active editor is in their sixth year of

tenure in our data.

1.3 Publication and Author Data

Our primary source of biomedical publication data is the “Author-ity” dataset developed by Torvik

and Smalheiser (2009). This dataset offers a disambiguated publication history for virtually all

authors with publications in the US National Library of Medicine’s PubMed Database until 2008,

and it has been shown to have very high precision and recall (Lerchenmueller and Sorenson 2016).

We supplemented this with additional publication data sourced directly from PubMed as needed.

4Article review times are often on the order of weeks to a few months. For more, see
www.nejm.org/media-center/publication-process.
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Summary statistics of editors we are able to match to their publication record are displayed in Panel

(b) of Table 1.5

1.4 Categorizing Topics with Medical Subject Headings (MeSH)

In order to index topic space – the scientific content of publications – we make use of the US

National Library of Medicine’s Medical Subject Heading (MeSH) system. MeSH is “a controlled

and hierarchically-organized vocabulary,” and perhaps the most widely used classification system

for biomedical research.6

The MeSH system’s specificity and hierarchical organization makes it a valuable tool for

empirical research. It presents topics as discrete, mutually exclusive, nested components and

facilitates the calculation of quantitative measures of the relatedness and breadth. For example,

both Diabetes Mellitus and Adrenal Gland Diseases are sub-terms under the broader category of

Endocrine System Diseases, whereas Heart Diseases and Cardiovascular Infections are sub-terms

under the broader category of Cardiovascular Diseases.

All articles in PubMed are assigned MeSH terms. Importantly, these assignments are performed

by the National Library of Medicine’s algorithms and staff, not authors. In the next section, and in

Appendix A (in detail), we describe how we use these terms to construct MeSH-level publication

flows for each journal-year that we observe.

Panel (b) of Table 1 reports the share of the MeSH tree that appears in the publications 1)

previously written by editors and 2) in journals. On average, each journal spans roughly 15% of

the tree, whereas the editors at these journals have published on a wider swath of topics, covering

about 30% on average. Our focus in this paper is testing whether or not it is the case that editors

steer their journals towards the portions of the MeSH tree that they themselves have previously

focused on.

An important caveat to our topic modeling approach is that we are treating papers as purely

a combination of MeSH terms – if two papers have the same MeSH terms then they are “equal” for

our purposes. This prevents us from speaking to whether or not editors may have preferences over

other features of papers conditional on their MeSH content (e.g., risk, novelty, clarity, implications,

etc.). In short, MeSH provides a useful tool for indexing the “Background” and “Methods” sections

of papers, but it is much less useful for investigating the “Conclusions” of a study.7

5Compared to a random 5% subsample of the nearly 7.5 million non-editor authors in the Author-ity data, the
median editor in our sample journals is above the 99th percentile of publication counts.

6For more, see www.nlm.nih.gov/mesh/meshhome.html.
7In the Appendix, we report additional results where we use the affiliation by-lines from authors’ publications

as an alternative proxy for a combination of the scientific community/institutional origins of papers; these are very
similar to our preferred specifications.
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2 Empirical Framework

To begin, consider a simple test for the presence of scientific homophily that relates the share of

publications on MeSH topic m at journal j in year t, SP
mjt, to the same share measure based on

editors’ publications prior to their start at the journal, SE
mjt

8:

SP
mjt = α+ SE

mjtβ + εmjt , (1)

where β is the focal parameter describing the scientific homophily effect – the extent to which

editors are more likely to publish articles related to the topics they have previously studied. Once we

introduce further controls and assumptions (described below), we take the statistical significance of

our estimate, β̂, as evidence that gatekeeping exists. Additionally, we will rely on R2 and partial-R2

statistics to understand how much variation in content within and across journals can be attributed

to different forces.9 Beyond that, we use simulations to better convey the practical magnitude of

any homophily effect.

We refer to SE
mjt as capturing editors’ “experience” or “background” to reflect pure content of

this measure – it says nothing about the quality of editors’ prior publications. This variable will

thus reflect some combination of editors’ skills, expertise, their preferences, or any other force that

previously influenced the direction of their research (e.g., funding opportunities as in Myers (2020)

and Hegde and Sampat (2015) or competitive pressures as in Hill and Stein (2021)).

Our preferred construction of SE
mjt is based on the aggregated publication records of all

current editors prior to the start of their tenure. This approach implicitly puts more weight on the

publication records of individuals with more publications. As reported in the Appendix, we obtain

very similar results if we calculate the editorial topic shares first at the individual-level and then

take the average of those values, which effectively gives each editor equal weight.

Panel (c) of Table 1 reports the distributions of these share measures (SP , SE). Clearly, there

are a large number zeros in our data. On average each year, journals publish articles related to

about 15% of the more than 6,000 MeSH terms we use in our preferred data construction. Likewise,

editor’s publications only cover about 30% MeSH topics at each journal in a year. Given this

sparsity, we estimate multiple versions of Equation 1 using linear, binary, and log transformations

of the share variables to investigate intensive and/or extensive margin effects.

2.1 Journal Missions and Topic Markets

Our goal is for the focal parameter in Equation 1, β, to capture only the scientific homophily effect

that describes how editors effect published content for idiosyncratic reasons related to their own

background. This requires an understanding of what generates variation in the composition of

8We focus on editors’ publications prior to the start on a board to prevent any feedback effects whereby editors’
publications might be influenced by the work they evaluate while working for a journal.

9The partial-R2 for a given independent variable x is defined as
R2−R2

−x

1−R2
−x

, where R2 corresponds to the saturated

model and R2
−x corresponds to the model where x is excluded.
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editors across and within journals since we lack any systematic sources of exogenous variation in

editors. In particular, two important forces are in play: journal’s missions to focus on particular

topics, and time-varying, aggregate (i.e., across all journals) trends in the supply of and demand for

research on certain topics.

Journals’ Missions

All journals in our sample, and virtually all academic journals, have “missions” of varying scope.

For example, consider the following excerpts from the latest mission statements or mastheads of a

few journals in our sample:

Anesthesia & Analgesia: “articles on the latest advances in drugs, preoperative preparation, patient

monitoring, pain management, pathophysiology, and many other timely topics”

Stem Cells: “laboratory investigations of stem cells and the translation of their clinical aspects”

Annals of Surgery : “contributions to the advancement of surgical science and practice”

Clearly, given their titles, these journals vary in terms of the topics of articles they publish.

Notably, these missions are extremely persistent over time. Consider, for example, the Annals of

Surgery ’s missions from about 35 and 135 years ago:

Annals of Surgery, 1985: “articles in the field of surgery ... devoted to the surgical sciences”

Annals of Surgery, 1885: “monthly review of surgical science and practice”

Of course the Annals of Surgery is, and has always been, focused on publishing research on

surgery. This may seem trivial, but it does have implications for our empirical approach. When

current editors are choosing their replacements, we should expect them to choose experts on the

same (sub-)topics they themselves are experts on, and for these editors, in turn, to choose to publish

new papers on similar topics as before. We would not classify this persistence as any kind of

editor-specific gatekeeping per se. Empirically speaking, this means that our model should account

for the unique, persistent preference that each journal (j) has for each MeSH topic (m) given its

mission.10

Topic Markets

The notion of “topic markets” – the aggregate supply of and demand for research on certain topics –

is also relevant. Over time, the costs of studying any given topic will fluctuate as science progresses

or stalls. Likewise, the benefits of new knowledge on a topic will fluctuate with the preferences of

the consumers of these papers (e.g., clinicians, other academics, funders, policy-makers). As shown

in Figure 1, which plots the PubMed-wide trends for a few select MeSH topics, these trends can

vary widely in any year and over time.

10As shown below, we will use a fixed effects approach to capture variation due to these missions rather than
attempting to infer anything directly from the actual mission statements. The example statements here illustrate
what the data reveals: journals have highly persistent preferences for certain topics.
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Thus, when editors choose their replacements, we should expect them to form expectations

about future supply and demand and choose experts on topics that they anticipate will be germane

in the near future. This implies that we could observe a correlation between editors’ backgrounds

and publications in their journal simply because of trends in topic markets. Empirically speaking,

this means that our model should account for aggregate changes/shocks that are common to all

journals, but unique to MeSH topics (m) and time-varying (t).

2.2 Main Regression Model

In order to account for the role of journals’ missions and topic markets, we modify Equation 1 to

include two vectors of fixed effects at the MeSH-journal (mj) level to account for missions and at

the MeSH-year (mt) level to account for markets. This yields our main regression model:

SP
mjt = γmj︸︷︷︸

journal’s
mission

+ σmt︸︷︷︸
topic

markets

+ SE
mjtβ︸ ︷︷ ︸

editors’ scientific
homophily

+ εmjt . (2)

Even with this rich set of fixed effects, there is still variation in editor composition, largely due to

the term limits associated with most editorial positions (as well as any idiosyncratic events that lead

to churn in editors). In our sample, researchers move in and out of these positions fairly frequently;

roughly 18% of editors are new to a journal in a given year.

2.3 Connection to a Model of Demand for Editors and Content

While relatively intuitive, Equation 2 does not obviously reflect a model of the choices that generate

our data. However, in Appendix B we follow the discrete choice theory of Berry (1994) closely and

show that Equation 2 approximates a stylized logit model of the aggregate demand for publications

and new editors by current editors. In this model, we consider two “products” that current editors

demand: (1) the MeSH topics of new papers to be published, and (2) the MeSH topics of prior

papers written by researchers who might be chosen as new editors. It is these two choices that

generate variation in our independent (SE) and dependent (SP ) variables. We relate the mean

utility of these two products to each other, while incorporating the same mission- and market-based

forces, and arrive at an empirical model that is analogous to Equation 2.11

2.4 Estimating the Upper Bound of the Scientific Homophily Effect

The fixed effects included in Equation 2 will eliminate most of the endogenous variation in our

data, but not all of it. Specifically, we are concerned that there still may be unobservable “local”

shocks – unique at the mjt-level observation – that codetermine both publication outcomes and

editor selection. For instance, consider the large surge in AIDS-related research illustrated in Figure

11This demand model specifically motivates a regression using log transformations of the share variables, which we
report in many results tables.
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1. While our MeSH-year fixed effects (σmt) will remove this aggregate trend from the data, it surely

must have been the case that this surge was more relevant for certain journals (e.g., the general

interest, clinically-focused Journal of the American Medical Association) compared to others (e.g.,

Anesthesiology) and in turn we would expect these journals to have both sought out new editors

with (early) experience studying AIDS while also publishing papers at the frontier of AIDS research.

We have no way of accounting for these sort of local, correlated shocks, but presumably editors

did when making their choices. We assume that existing editors tend to choose new editors who

have more experience in topics where such shocks are more positive (e.g., due to an upward surge in

supply or demand for the topic by the journal). If correct, this implies a non-negative correlation

between SE and ε, even conditional on our fixed effects. This could bias our estimate of β upwards

and, for this reason, we view our estimates of the scientific homophily effect as upper bounds.12

3 Results

3.1 Main Results

Table 2 displays the main results, with three panels that correspond to regressions based on (a)

linear, (b) binary, and (c) log transformations of the focal share variables. For all panels, column

1 reports the results from regressions with no fixed effects, columns 2–3 include the mission and

market fixed effects (respectively), and column 4 includes both vectors of fixed effects.

In all three models, the naive regressions shown in column 1 suggest elasticities between 0.5

and 1.0 and editors’ research backgrounds alone can explain a large portion of the content published

in their journals; the R2 values range from 0.2 to 0.8. As a starting point, these magnitudes suggest

that editor’s preferences for scientific homophily may shape the content of their journals.

However, the journal-mission and topic-market fixed effects each independently absorb a large

amount of variation in the data as seen in columns 2–3. In all models, both the point estimate and

partial-R2 of the scientific homophily effect both decrease significantly when either of the controls

are included.

In our preferred specifications, shown in column 4, we obtain elasticity estimates of roughly

0.230 with the linear model, 0.044 with the binary model focusing on extensive margins, and 0.046

with the log model focusing on intensive margins. With standard errors clustered at the MeSH

topic level, our estimated confidence intervals of these elasticities span from about 0.038 to 0.289.

The lower rows of each panel in Table 2 report a set of R2 statistics for each regression.

Focusing on the partial-R2 corresponding to the scientific homophily effect, we observe a pattern

similar to what happens with the point estimates of the coefficients. With both sets of fixed

effects are introduced (column 4), the partial-R2 decreases by almost two orders of magnitude to

between 0.001 to 0.024. Conversely, missions and markets appear to be very good at explaining

what is published in these journals – the partial-R2 of these factors are in the range of 0.12 to

12In the demand model described in Appendix B, we formalize these local shocks and the assumption about
non-negative selection.
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0.65. And because a significant amount of the variation in editors’ own research occurs along these

same dimensions, not accounting for missions or markets appears to severely overstate the implied

importance of scientific homophily due to gatekeeping.

Interpreting Magnitudes

While the magnitudes associated with the scientific homophily effect reported above are statistically

significant, they also appear to be rather small in our preferred specifications –certainly relative to

the naive regressions with no controls. Recall that we hypothesize these magnitudes reflect an upper

bound of the true effect. However, it is still difficult to gauge any practical importance because we

do not have a benchmark for what is “large” versus “small” in this context.

One option for reference points would be (the absolute value of) price elasticities of demand

for consumer goods and services. Of course, there are no prices in our data, but one could frame the

homophily elasticity as capturing the fact that papers more closely in line with editors’ backgrounds

might face a lower shadow price to be published at that journal. In markets for moderately expensive,

non-routine purchases such as automobiles or airline tickets price elasticities are often estimated to

be in the range of –3.5 to –1.5 (Berry et al. 1995, 2004; Berry and Jia 2010). For price elasticities

that approach our magnitudes, one must look to necessities such as gasoline or electricity where

elasticities appear in the range of –0.2 to –0.3 (Espey 1998; Espey and Espey 2004) or healthcare

markets where elasticities exhibited by insured patients often span –0.1 to –0.2 (Manning et al.

1987; Einav et al. 2018). Our estimates indicate very inelastic behavior at these journals and are

often smaller in magnitude than the elasticities of consumers who are practically considered to be

quite unresponsive to prices; this provides further support that the scientific homophily effect is not

practically very large.

Another way to consider the importance of the scientific homophily effect is to focus on the

corresponding partial-R2 statistic. As noted above, editors’ backgrounds explain only a tiny share

of variation in published content. This small value could be because either (1) there is a truly large

scientific homophily effect, but the observed variation in editors’ backgrounds is so small that the

effect does not generate sizable variation in content, or (2) the effect is in fact small. The data

suggest the latter: as reported in the summary statistics of Panel (c) Table 1, there is actually more

variation in MeSH shares for editors (SE
mjt) than there is for journals’ publications (SP

mjt).
13

3.2 Alternative Specifications & Heterogeneity

In Appendix C, we present a number of additional results based on alternative specifications. We

implement alternative controls for missions and markets, change our definitions of the risk sets

(i.e., which journal-MeSH pairs are feasible), explore different levels of aggregation of the MeSH

hierarchy, and test alternative ways of aggregating editorial boards. The magnitudes and patterns

13The coefficient of variation of these non-zero distributions is 25% larger for SE
mjt than SP

mjt.
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documented in our main results persist across all specifications, suggesting that no single decision

related to our data construction or estimation are leading to spurious results.

Appendix C also explores a number of dimensions of heterogeneity in order to further explore

the nature of the homophily effect we identify. First, to get some sense as to whether the effect

is driven more by an editors “expertise” versus their “preferences” (although the two are surely

correlated), we report results after separating publications into two groups that should reflect these

two forces: research (i.e., peer reviewed articles) and non-research (e.g., editorials, comments, letters)

articles. The homophily effect we are identifying appears to be almost entirely driven by editors’

research publications.

We also investigate the extent to which the homophily effect may be changing over time,

and we find evidence that the magnitude of the effect is declining over time to the point of losing

statistical significance (see Figure C.2). Lastly, motivated by “novelty bias” identified in prior

research (Boudreau et al. 2016), we test whether editors appear to induce more or less homophily

when focusing on “new(er)” topics. We investigate this question by proxying for a topic’s age based

on the year it was introduced into the MeSH hierarchy, and allowing the homophily effect to be a

function of this age. Our results yield no conclusive evidence that the homophily effect is stronger

(or weaker) for newer (versus older) topics.

3.3 Proxying for Quality with Forward Citations

Given that we identify a non-zero scientific homophily effect, an obvious follow-on question is

whether the content marginally steered into these journals and associated with this force is of

differential quality relative to what would have been published in the absence of this effect. This

quality effect is indeterminate ex ante.14

As is customary, we proxy for publication quality using forward citations (scaled by the year of

publication) and estimate citation-weighted versions of our main regressions. Table C.8 reports these

citation-weighted results alongside the unweighted regressions. In all cases, the citation-weighted

effects are smaller than the unweighted effect, which indicates that this new content obtains fewer

citations relative to the additional space in the journal it obtains. Under the admittedly generous

assumption that editors are able to forecast these citations accurately, the magnitudes imply that

editors are willing to accept about a 2% – 5% decline in (expected) forward citations for every 10%

increase in proximity to their own expertise. Yet whether this truly reflects any sort of welfare

loss is extremely unclear. While forward citation counts provide an intuitive and simple proxy

for scientific value, work such as Wang et al. (2017) has shown that novel science tends to have a

delayed accumulation of citations. Thus, our finding could easily be rationalized by editors having

more private information about research more closely related to their own expertise that will be

valuable in the longer run.

14On this point, Laband and Piette (1994) find evidence that institutional connections may facilitate the discovery
of higher quality publications. Conversely, Boudreau et al. (2016) and Li (2017) highlight psychological and strategic
factors that may run in the opposite direction.
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3.4 Alternative Approach: Affiliation-based Topic Modeling

As an alternative approach to indexing scientific topic space, we make use of the affiliation bylines

in authors’ publications. Thankfully, the “Author-ity” database (Torvik and Smalheiser 2009)

contains data on the top twenty most common keywords that appear in each authors’ publications.

These keywords reflect some combination connections that may be of geographic (e.g., state names),

institutional (e.g., university names), and scientific (e.g., department names). Thus, they may reflect

a more holistic index of the context of a given authors’ publications.

Table C.9 recreates our main results table (Table 2) using these affiliation terms. Interestingly,

we obtain very similar results in all regards. The similarity in these results may reflect the fact

that both this and the MeSH-based approach are capturing the same phenomena. But, given the

large role of institutions in this affiliation-based approach, it may also be because the scientific and

institutional homophily preferences of editors are of roughly the same size. Regardless, the results

again suggest that the nature of homophily we are isolating is not a very large determinant of what

gets published at these journals.

3.5 Understanding Magnitudes via Simulated Editorial Takeovers

In order to provide another perspective on the magnitude of the homophily effects we have estimated,

we perform a series of simulated editorial “takeovers” to explore how much new editors might alter

the content of a journal. This exercise is meant only to illustrate whether or not replacing one or

more editors might plausibly lead to meaningful changes in the composition of journals.

We begin the exercise by first estimating the scientific similarity of all possible pairs of

journals in our data. We use the cosine similarity metric based on the MeSH terms, which yields a

number ranging from zero to one, with larger values indicating higher similarity. Figure 2a plots the

distribution of these observed similarities, which range from about 0.25 up to nearly 1 (mean= 0.75,

s.d.=0.18). As a test of face validity, the two most similar journals in our sample are, reassuringly,

Anesthesiology and Anesthesia & Analgesia.

We then simulate fifteen counterfactual scenarios, in which we iterate through each of the

fifteen journals in our sample and (1) replace the entire editorial board at the other fourteen journals

with the editors at the focal journal, (2) estimate the change in the published content that would

be expected given our estimates of the scientific homophily effect, and finally (3) estimate the

similarity between the (unchanged) focal journal and the fourteen other (changed) journals. We can

then calculate the change in the similarity post-takeover and scale these changes by the number of

editors replaced to obtain effect sizes per editor. To be as generous as possible, we perform these

simulations using the point estimates of the homophily effect from our linear model, Panel (a) of

Table 2, which yielded one of the largest estimates across our specifications.

Figure 2b plots the results of these takeovers. To aid in interpretation, we plot the percent

decrease in the distance (the inverse of similarity) between two journals content post-takeover. Using

the large estimates from the model with no controls yields an average decrease in the distance of
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the journals post-takeover of approximately 60% (s.d.=20%), which is roughly equivalent to 0.9

standard deviation of the baseline differences across the journals.

When using the homophily estimate from our preferred specification, the average decrease in

distance post-takeover is only 24%, or 0.3 standard deviations of baseline differences. This change

appears relatively small, even considering the fact that the entire editorial board is replaced with

editors from different journals. To get a better sense of magnitudes on a per person basis – levels of

editorial churn we see in practice – Figure 2c plots the same changes, but scaled by the number

of editors being replaced. This scaling indicates that each editor is, on average, responsible for

bringing the two journals closer together by only about 0.4% (or 0.005 standard deviation of the

baseline differences across the journals). This exercise indicates that incremental changes in editors

would not have a meaningful effect on the content of a journal’s publications.

4 Discussion

Overall, our results point to a scientific homophily effect that is practically very small and, if

anything, declining over time. The role of this sort of homophily is dwarfed by the importance of

journals’ missions and aggregate market-wide supply and demand for topics. Enduring institutional

norms and markets for ideas appear to exert much more influence in this context despite the

appearance of gatekeeping in the unconditional correlations.

However, an important limitation of our approach is that we cannot investigate any persistent

or pervasive biases since our empirical model subsumes any of these sorts of effects into our “missions”

and “markets” controls. In other words, our findings cannot speak to circumstances where editors

across all major journals may not be willing to publish a particular idea or ideas from particular

groups of people. Thus, we believe future work that studies the academic publication process

should focus on better understanding persistent within-journal biases over long periods of time (i.e.,

understanding what drives variation in γmj across journals) as well as any pervasive biases across

journals related to particular topics (i.e., understanding what drives variation in σmt across time).

Evaluating these sort of long-run or large-scale issues will require particularly unique data and

creative research designs, but our results suggest that any short run concerns surrounding scientific

homophily might not be very important.

The generalizability of our results is difficult to predict. The biomedical journals we focus

on publish large amounts of research that can be clearly characterized as either experimental (e.g.,

randomized clinical trials, laboratory experiments) or descriptive (e.g., epidemiological reporting of

disease prevalence). This may imply that editors at these journals have fewer degrees of freedom

compared to, for example, editors in the social sciences where quasi-experimental methods are

more prevalent. Thus, replicating versions of our analyses in other fields could prove useful for

understanding how we evaluate and disseminate science across disciplines.
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Tables & Figures

Table 1: Summary Statistics

Panel (a): Sample Journal List

Am Rev Respir Dis Anesth Analg Anesthesiology
Ann Intern Med Ann Surg Br J Anaesth

Circ Res Circulation Hum Brain Mapp
J Am Coll Cardiol J Nucl Med JAMA

N Eng J Med Radiology Stem Cells

Panel (b): Journal & Editor Statistics (Journal-Year obs.)

Obs. Mean S.D. Min. p25 p50 p75 Max

Year 336 1996.9 6.9 1985 1991 1997 2003 2008

Editors
Num. Matched Eds. 336 57.8 51.8 7 25 38 76 278

Eds’. Current Tenure 336 5.70 2.51 0.00 4.11 5.19 6.59 14.88
Pubs. per Ed. 336 72.4 27.5 33.0 49.2 66.7 95.5 151.1

Share of MeSH Tree 336 0.302 0.098 0.097 0.224 0.306 0.364 0.552

Journals’ Pubs.
Pubs. 336 563.7 323.7 36 336 500 717 1,476

Share of MeSH Tree 336 0.147 0.052 0.018 0.110 0.144 0.182 0.294

Panel (c): MeSH Share Statistics (MeSH-Journal-Year obs.)

Obs. Mean S.D. Min. p25 p50 p75 Max

Journals’ Pubs.

1{SP
mjt} 1,954,148 0.154

SP
mjt if > 0 302,652 1.11e−3 4.40e−3 1.74e−5 1.55e−4 3.22e−4 7.81e−4 0.157

Editors’ Pubs.

1{SE
mjt} 1,954,148 0.318

SE
mjt if > 0 620,759 5.41e−4 2.71e−3 9.35e−7 3.38e−5 1.01e−4 3.31e−4 0.107

Notes: Panel (a) lists the fifteen in-sample journals per their ISO 4 abbreviations. Panel (b) reports
summary statistics for the editors and journals in our data. Editors’ Publications per Editor reports
the average number of publications per editor at the journal, counting only publications prior to the
editors start. Share of MeSH Tree reports the fraction of the entire MeSH tree used in our main analyses,
which is comprised of approximately 6,100 terms, with non-zero publications per year (i.e., a value of 0.1
indicates that, on average, the publications in a journal span 10% of the MeSH tree each year). Panel
(c) reports statistics for the MeSH-journal-year (mjt) share variables, including the fraction that are
greater than zero (1{}) and the distribution of shares conditional on being non-zero (if > 0), which are
approximately log-normal.
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Figure 1: Example MeSH Topic Trends

0.000

0.002

0.004

0.006

Share of
PubMed

1980 1985 1990 1995 2000 2005

Reproducibility
HIV/AIDS
mRNA
Kidneys & dialysis
Cesarean section

Notes: Plots the annual share of the total PubMed publication record from 1978 to 2008 that is related
to five example topics.
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Table 2: Main Results

(1) (2) (3) (4)

Panel (a): D.V. = SP
mjt

SE
mjt 1.044 0.245 0.867 0.230

(0.054) (0.038) (0.038) (0.029)

Elasticity at means 1.043 0.245 0.867 0.230

Total R2 0.822 0.943 0.864 0.952
partial-R2, mj-missions 0.680 0.646
partial-R2, mt-markets 0.238 0.155
partial-R2, sci. homophily 0.822 0.029 0.457 0.024
Obs., mjt 1,953,818 1,953,818 1,953,818 1,953,818

Panel (b): D.V. = 1{SP
mjt}

1{SE
mjt} 0.353 0.065 0.129 0.021

(0.005) (0.002) (0.002) (0.001)

Elasticity at means 0.723 0.133 0.265 0.044

Total R2 0.206 0.556 0.420 0.611
partial-R2, mj-missions 0.441 0.323
partial-R2, mt-markets 0.269 0.115
partial-R2, sci. homophily 0.206 0.004 0.023 0.001
Obs., mjt 1,953,818 1,953,818 1,953,818 1,953,818

Panel (c): D.V. = log(SP
mjt)

log(SE
mjt) 0.530 0.089 0.466 0.046

(0.016) (0.007) (0.007) (0.004)

Elasticity at means 0.530 0.089 0.466 0.046

Total R2 0.398 0.725 0.601 0.803
partial-R2, mj-missions 0.543 0.499
partial-R2, mt-markets 0.338 0.274
partial-R2, sci. homophily 0.398 0.006 0.241 0.001
Obs., mjt 224,224 224,224 224,224 224,224

Incl. γmj Y Y
Incl. σmt Y Y

Notes: Standard errors are in parentheses and are clustered at the MeSH (m) level. The bottom two rows
apply to all panels and indicate which columns are based on specifications that include MeSH-journal
(mj) and/or MeSH-year (mt) fixed effects.
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Figure 2: Journal Similarity, Observed and After Simulated “Takeovers”

(a) Observed Journal-Journal Similarity Scores
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Journal pair similarity

(b) Decrease in Distance Post-Takeover,
Total Board Replacement
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(c) Decrease in Distance Post-Takeover,
Per Editor Replaced
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journal
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Notes: Panel (a) plots the distribution of all pairwise similarity scores between journals based on the
cosine similarity of the average rate of MeSH term appearance in their respective publications. Panel
(b) plots the decrease in the distance (the inverse of similarity) between two journals after replacing an
entire editorial board and then only allowing the homophily effect (estimated from a regression including
no controls or both markets and missions controls) to alter the content of the journal. Panel (c) reports
the same changes as Panel (b), but scaled by the average number of editors at each journal to estimate
the distance decrease per editor.
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A Data Construction and Additional Summary Statistics

A.1 Journal Data

Figure A.1 outlines our process. To construct our set of journals, we follow related work by Amrein

et al. (2011) and select the five top-rated journals from general medicine and the specialties of

anesthesiology, critical care, radiology, surgery, and hematology. We then restrict the sample to

journals where we were able to obtain physical copies (which are necessary to observe the masthead

for the editorial staff information) prior to 1995 and less than three years of hard copies were missing.

To the extent possible, we obtained one physical copy per year for each journal where the earliest

year pursued was set by a rule-of-thumb to be two years prior to the appointment of whomever

was editor-in-chief of the journal in 1985. From scans of these physical copies, we outsourced the

manual transcription of the editorial board members.

Figure A.1: Flowchart of Data Construction

Data Info

8515 editors, of which 3631 were unmatched (42.6%) 629,315 articles matched to editors via Authority 14,821,352 journal articles matched to journals via 
PubMed API

Fix Multi-Match  Editors

727 number of editors had duplicate matches to authors in "Author-ity" data Used Author with highest cosine similarity to journal MeSH terms

Disambiguate Authority Model

Source: Torvik and Smalheiser 2009
Expand author name to create all 

first name - middle initial - last name combinations.
Match Editors to Authors via string-match on names 

Clean Journal Sample

Keep journals with less than three years of missing 
data between first scan and 2009. 18 eligible journals Shared with Upwork users for transcription

Scan Editorial Data

Manually scanned 972 editorial board pages from physical copies @HMS library. Journal samples begin 2-years pre-appointment of 1985 editor-in-chief

Notes: Outlines the data construction process.

A.2 Publication Data and MeSH Categorizations

MeSH terms are assigned at the article level. However, by combining sets of articles by journal(s)

and author, we can measure the relative prevalence of MeSH topics for broader corpuses of work.

As a result, our key regression variables are shares of articles containing a given topic within a
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Table A.1: Journal Summary Statistics

Earliest Latest Pub.-Matched Editors’ Journals’
Journal Year Year Num. Eds. Pubs. per Ed. Pubs per Year

Am Rev Respir Dis 1978 2008 62.3 (25.7) 75.8 (13.1) 522.6 (124.0)
Anesth Analg 1976 2008 21.7 (21) 44.7 (14.3) 535.1 (225.0)
Anesthesiology 1975 2008 22.9 (14.8) 40.7 (6.69) 433.5 (104.0)

Ann Intern Med 1969 2008 25.1 (8.19) 58.8 (16.2) 481.6 (76.4)
Ann Surg 1972 2008 24.6 (15.7) 120.1 (15.3) 231.1 (33.8)

Br J Anaesth 1981 2008 17.4 (4.64) 43.8 (4.98) 338.5 (70.2)
Circ Res 1980 2008 82.2 (38.4) 84.1 (11.1) 301.8 (86.5)

Circulation 1981 2008 160.4 (80.6) 106.7 (3.98) 889.8 (369.0)
Hum Brain Mapp 1998 2008 37.2 (3.95) 54.2 (8.94) 76.7 (27.5)
J Am Coll Cardiol 1983 2008 102.5 (51.4) 103.9 (19.5) 586.2 (137.0)

J Nucl Med 1975 2008 45.5 (26.4) 56.7 (14.8) 325.9 (81.6)
JAMA 1980 2008 28.0 (3.56) 60.8 (10.6) 1,000.1 (105.0)

N Eng J Med 1976 2008 19.0 (12.5) 77.7 (18.7) 1,132.0 (232)
Radiology 1964 2008 49.3 (37.1) 39.3 (10.1) 593.9 (133.0)

Stem Cells 1996 2008 54.4 (30.5) 111.6 (17.2) 150.7 (113.0)

Notes: The rightmost six columns report the mean and s.d. in parentheses for the three variables listed
in the heading. “Pub.-Matched” counts only editors that we are successfully able to merge to an entry
in the Author-ity (Torvik and Smalheiser 2009) disambiguated publication database.

journal-year or editors own publications. Aggregating MeSH topics poses two main challenges. First,

any given PubMed article can be associated with multiple MeSH terms. Some articles have dozens

of assigned MeSH topics while others only have a handful. To address this issue, we weight each

topic by the inverse of total topics per article–such that topics get larger weight assigned when the

article has fewer total topics.

The second issue in aggregating MeSH topics’ relative frequencies is that the MeSH tree’s

“branches” vary in length and specificity.1 For example, one article might be tagged with the general

(three digit) topic of “Digestive System Diseases,” while another article is assigned the (15 digit)

topic of “Somatostatinoma,” a particular type of pancreatic cancer, which is a sub-branch of the

larger “Digestive System Diseases” topic. In handling these types of comparisons, we don’t want

to throw away valuable detail within MeSH branches, but we also want to make sure we are not

overstating differences between topics within the same larger branches.

Our solution, loosely speaking, is to calculate the “distance down a branch” each MeSH term

is. For instance, if a certain branch of the MeSH tree contains a total of 3 successive terms, we’d

denote the first term as being 1/3 specificity, the second being 2/3, and the last being 3/3. Then,

we can make a choice about how aggregated (less specificity; shorter distances down the branch) or

disaggregated (more specificity; longer distances down the branch) we’d like the data to be. In our

preferred specifications, we aggregate the MeSH tree to 50% of all branches. As shown below, we

obtain very similar estimates when disaggregating more or less.

1Within the MeSH system, the levels of depth of a given sub-topic is denoted by the number of digits associated
with its identifier.
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B Motivating Demand Model

The following presents two interconnected demand models of how scientists choose content to

publish in journals (which generates variation in our dependent variable), and how they choose

to fill editorial positions (which generates variation in our focal independent variable). Besides

motivating our regressions, the purpose of this exercise is to formalize our argument as to why our

estimate of the scientific homophily effect is likely an upper bound of the true effect.

To preface, there are two major departures from reality in the demand models that follow.

First, we model the joint utility to both non-editors and editors from publishing content and filling

editorial positions, because we cannot observe rejected paper submissions or unsuccessful bids to

become an editor. That is, we ignore the facts that a given article is only ever submitted to a very

few number of journals, and only a very few number of (non-editor) individuals are considered for

editorships. Thus, the homophily effect we estimate will be driven by a combination of the choices

made by non-editors and editors.2

Second, we ignore the fact that publication choices are made at the level of indivisible papers

and editorship choices are made at the level of indivisible humans. Instead, we model choices at

the level of the scientific (MeSH) topics that describe the content of papers and, based on the

papers they’ve written, the specialties of scientists. In other words, our model describes a world

where portions of an article could be published in different journals and only portions of a scientists’

expertise could be awarded an editorship. This abstraction dramatically simplifies our empirical

approach and directly motivates our regressions with a specific set of fixed effects. These fixed

effects remove variation in the data due to the forces described earlier – namely, journals’ missions

and market-wide topic trends – which, if not accounted for, may yield incorrect estimates of the

homophily effect.3

B.1 Publication choices

The joint utility to authors and editors considering each article a (the consumers) from publishing

their topical content m (the products) in a given journal-year jt (the markets) depends on features

of the journal and the topics of the paper. The outside good is not publishing any content that

could have possibly fit within the journal’s pages.

2For instance, how much of the homophily effect is driven by authors choices about which journals to submit
papers to (due to their beliefs about the homophily effect), and how much is due to editors choices amongst the set of
papers they actually receive? We cannot separate these effects, which may be an interesting area for future research.
However, our goal here is to understand the magnitude of this aggregate effect, because if it is small (as our results
indicate), it suggests that allocating resources to understanding or addressing this particular homophily effect may
not be worthwhile.

3Unlike traditional discrete choice models of demand (e.g., Berry 1994), our units of observation are actually based
on features of the (true) product (i.e., topics of these papers). Practically speaking, in the colloquial terms of “wide”
and “long” data, where traditional demand models are wide – products have multiple features described by multiple
data columns – our model is long – where papers exist in multiple data rows.
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We follow Berry’s (1994) approach to modeling a discrete choice and write the joint indirect

utility from publishing article a, which contains topics m, in journal j at year t as:

uamjt = δmjt + εamjt , (1)

where δmjt is the mean indirect utility term common to all mjt, and εamjt is an i.i.d. idiosyncratic

term with a Type 1 extreme value distribution.4

The mean indirect utility from publication depends on journal-time specific quality thresholds

and/or space constraints (αjt), the journal-topic specific match due to the time invariant missions of

journals (γmj), aggregate market-wide trends in the supply of or demand for topics over time (σmt),

“local” supply and/or demand shocks at the journal-topic-time level ξmjt, and the journal-specific

expertise and backgrounds of current editors, summarized by the parameter δ′mjt:

δmjt = αjt + γmj + σmt + δ′mjtβ + ξmjt . (2)

For example, a more negative αjt would indicate that it is harder to publish in jt compared to

other journals at that time; a more positive γmj would indicate that it is always easier to publish in

journal j when the article is related to topic m.

We will construct a measure of δ′mjt with data, and β is the focal homophily parameter that

governs how much editors’ research backgrounds influence the composition of the publications in

their journals (i.e., via gatekeeping). Our estimate of β will capture the net effects of editors possibly

having stronger preferences for the topics that they themselves study, as well as the possibility that

editors evaluate work more closely aligned with their own specialties more critically (i.e., Boudreau

et al. 2016; Li 2017). The local-shock term (ξmjt) is unobservable, and we cannot empirically account

for it – it is what will lead us to interpret our estimate of β as an upper bound as we outline below.

B.2 Editorship choices

Next, we specify a utility model of editors choosing their replacements. The joint utility to potential-

editors and current editors i (the consumers) from having the potential-editor with expertise on

topic m (the products) become an editor at journal j in year t (the markets) depends on features of

the journal and the experience of the individual, as proxied by the topics of the papers they have

written. Assume for simplicity that each individual can only be in one position at a time, and the

outside good is defined as not filling a potential editor slot. Since we’re again modeling choices

4This commonly used assumption yields a closed form solution for choice probabilities and facilitates the linear
regressions below. The independence of these terms is implausible since the εamjt values associated with each article
will very likely be correlated. Furthermore, it also assumes the independence of irrelevant alternatives, which can be
problematic when constructing elasticity matrices for substitution patterns. We are not very concerned with these
issues given the objective of our analyses – inferring the magnitude of any homophily effect. The first issue likely
implies that our counterfactual exercise will allow more flexibility in the content publishing process (since, per our
model, an editor could technically publish a portion of a paper), which may yield larger changes due to homophily
than would be seen in reality, continuing our interpretation of our results as upper bounds. The second issue is likely
not relevant since we do not investigate any true counterfactuals related to the introduction of new products.
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at the topic-level, markets here are indexed by journal-time (jt) pairs and we have another joint

indirect utility function:

u′imjt = δ′mjt + ε′mjt, (3)

where again, δ′mjt is the mean indirect utility term common to all mjt, and εamjt is an i.i.d.

idiosyncratic term with a Type 1 extreme value distribution. Similarly as we do above, we

decompose the mean utility term into an additive series of jt-, mj-, mt-, and mjt-specific effects:

δ′mjt = α′
jt + γ′mj + σ′mt + ξ′mjt . (4)

Again, we allow the effects of journal size, journal scope, and topic trends to influence the value of a

scientist with a particular specialty becoming an editor.

In practice, editorships are filled for terms that often last many years (e.g., in our data the

average tenure is about sixteen years). Thus, potential and current editors must use their beliefs

(about γ′mj) and forecasts (about α′
jt, σ

′
mt, and ξ′mjt) when making editorship decisions. With this

in mind, we view the four right-hand-side parameters in Equation (4) as the beliefs/forecasts about

the corresponding parameters in Equation (2) (i.e., ξ′mjt is the forecast of ξmjt).

It will be useful to formalize the process relating the realized and forecasted local shocks

(ξmjt, ξ
′
mjt), so we assume:

ξ′mjt = δξmjt + µmjt , (5)

where the δ parameter captures the accuracy of forecasts, and µmjt captures “noise” in the specialties

of an editorial board that arises when forecasts of local demand shocks are not perfectly accurate.

The key assumption that leads us to interpret our estimate of the homophily effect (β) is to

assume

δ ≥ 0 . (6)

That is, we assume there is a non-negative correlation between forecasted and realized local demand

shocks for papers and editors that specialize in specific topics at specific journals at a specific time.

Next, we connect the two choice models above and make use of this assumption to motivate our

main regression model.

B.3 Empirical model

Based on Equations (1–2), and following Berry (1994), we can define mean utility and observed

publication market shares of each topics smjt and some outside good s0jt
5:

log
(
smjt/s0jt

)
= δmjt = αjt + γmj + σmt + δ′mjtβ + ξmjt (7)

5As shown below in Eq. 10, the specific definition of the outside good is irrelevant as it will drop out of the
estimating equation. In theory, the outside good reflects the value of not publishing any more content, just as in a
traditional product demand model the outside good often reflects the value of the no-purchase decision.
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Likewise, based on Equations (3–4), we can define mean utility and observed editorial market

shares of each topic s′mjt and the outside good s′0jt as:

log
(
s′mjt/s

′
0jt

)
= δ′mjt = α′

jt + γ′mj + σ′mt + ξ′mjt (8)

Substituting δ′mjt from Equation (8) into Equation (7) and making use of Equation (5), the

local-shock forecasting assumption, yields:

log
(
smjt/s0jt

)
= αjt + γmj + σmt + log

(
s′mjt/s

′
0jt

)
β + ξmjt

= (αjt + βα′
jt) + (γmj + βγ′mj) + (σmt + βσ′mt) + β

(
δξmjt + µmjt

)
+ ξmjt .

(9)

First, note that we can ignore both the αjt parameters and the denominators of the logged

share ratios, the outside good shares. Both of these are irrelevant because they are all constant

within jt, and the only two other data-based variables in the model (smjt, s
′
mjt) are both scaled at

the jt-level (since they are each m’s shares of in-journal publications or editors’ publications – the

variation is only within-jt). Thus, we can rewrite that first line of Equation (9) to be:

log(smjt) = γmj + σmt + log(s′mjt)β + ξmjt , (10)

which mirrors our main regression specification, Equation (2), except for the log transformation.

The last line of Equation (9) shows how our empirical estimate of β will depend on the (unknowable)

value of δ, which describes the accuracy of current editors’ forecasts of the local shocks ξmjt when

choosing future editors.

In one boundary case, if these local shocks are forecasted perfectly and δ = 1, then ξmjt = ξ′mjt

and µmjt = 0∀mjt. In this case, our estimate of β would equal one (and the parameters would

have no standard errors) because the only variation in log
(
s′mjt/s

′
0mt

)
(conditional on the fixed

effects) will be due to ξmjt – there would be no residuals in the regression. This would also lead to

an upward bias in the within-R2 associated with the gatekeeping effect.

In the other boundary case, if forecasts have no predictive value and δ = 0, then ξmjt and ξ′mjt

are orthogonal. In this case, our estimate of β would represent the true effect since the only residual

variation in log
(
s′mjt/s

′
0mt

)
(conditional on the fixed effects) is due only to the “noise” of µmjt.

To summarize, we cannot observe local shocks ξmjt
6, which describe journal-time-specific

shocks to the supply of and/or demand for research on a topic. The impact of this on our estimate

of the gatekeeper effect (β) will depend on the accuracy of forecasts about these local shocks (e.g.,

do current editors (care to) accurately forecast the demand for a certain type of research and choose

a new editor who has expertise in that topic?). As these forecasts becoming more accurate and

important (δ → 1), our estimate of β will be biased upwards and we will overstate the amount of

variation in publications due to gatekeeping. Conversely, as they become less important (δ → 0),

6Nor can we condition out this variation with fixed effects since that would eliminate the variation in editorial
specialties across journals and time.
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our estimate of β will approach the true value. Thus, under these assumptions, our regressions

identify a plausible upper bound of the amount of homophily created by editorial gatekeeping.
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C Additional Results

C.1 Alternative Specifications

Alternative Missions and Markets Controls

In Table C.2, we replicate our preferred specifications using data-based proxies (instead of fixed

effects) to condition out the mission- and market-based variation. For an alternative approach to

conditioning out the mission-specific variation, we include one-year lagged values of the dependent

variable within the MeSH-journal panels.7 For an alternative topic-market control, we include the

jackknifed average MeSH shares from all journals except the focal journal in a given year. Using

these alternative approaches yields elasticities all within the bounds of our main results reported in

Table 2.

Alternative Risk Set Definitions

As shown in Table 1 Panel (b), there are a large fraction of zeros in our two key MeSH share

variables. Given this, one reasonable concern is that these observations may not be “true zeros,” in

the sense that they may not reflect MeSH-journal pairs where there is a non-zero possibility that

either an editor will have published on the topic in the past, or the journal will have published on

the topic in the present. In other words, our decision to include all combinations of MeSH terms

and journals in the data might cause spurious results.

To investigate this possibility, Table C.3 replicates our main results using four alternative

sub-samples where we place stricter and stricter thresholds on which MeSH-journal pairs are included

in the analyses. In all cases, we obtain virtually identical estimates to our main results.

Alternative Topic Specificities

We noted in Section 1.4 that using the MeSH hierarchy to index scientific topics requires making

a decision about how much (not) to aggregate the topic tree hierarchy. This decision amounts to

deciding how specific the MeSH terms will be in the analyses. Our main results are based on, what

we term, a “50% aggregation” of the hierarchy in the sense that it is halfway between the most

specific and most aggregated we could make our MeSH terms.

In Table C.4, we report results from our preferred specifications using alternative levels of

specificity spanning from 10% (very aggregated) to 100% (using all unique MeSH terms). There is

some variation in our point estimates, but it is not substantial. In linear and binary models, the

point estimates increase with the specificity of the MeSH terms in the analyses. In log-transformed

models, the point estimates decrease with specificity of terms. Still, in all cases the elasticity

estimates are relatively similar and so we do not infer any meaningful heterogeneity from these

results.

7As noted by Angrist and Pischke (2008), results from the panel fixed effects (i.e., the main specifications using mj
fixed effects) and lagged dependent variables should bound the true estimate.
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Alternative Editorial Board Aggregation

In our main specifications, we construct the focal independent variable, SE , by effectively treating

editorial boards as one giant individual in the sense that we aggregate all publications by all editors

together when calculating SE . This approach implicitly puts more weight on editors with larger

publication records since the topics they studied prior to their tenure will, mechanically, appear

more frequently. An alternative approach would be to give each individual editor equal weight by

first averaging MeSH shares within individuals, and then across all individuals. Table C.5 reports

the results from this alternative approach and we find highly similar results. That is to say, editors

appear to have equal influence regardless of their prior publication output levels.

Table C.2: Alternative Mission and Market Controls

Linear-Linear Binary-Binary log-log
(1) (2) (3) (4) (5) (6)

SE
mjt 0.124∗∗∗ 0.099∗∗∗ 0.079∗∗∗ 0.087∗∗∗ 0.218∗∗∗ 0.190∗∗∗

(0.016) (0.011) (0.001) (0.001) (0.004) (0.005)

Elasticity at means 0.124 0.099 0.163 0.180 0.218 0.190
Total R2 0.959 0.955 0.504 0.452 0.742 0.650
partial-R2, mj-missions 0.698 0.723 0.145 0.169 0.353 0.416
partial-R2, mt-markets 0.101 0.010 0.156 0.069 0.264 0.000
partial-R2, sci. homoph. 0.029 0.023 0.010 0.015 0.062 0.065

Obs., mjt 1,862,633 1,862,633 1,862,633 1,862,633 156,359 159,900
Missions, control type Lag D.V. Lag D.V. Lag D.V. Lag D.V. Lag D.V. Lag D.V.
Markets, control type F.E. Jackknife avg. F.E. Jackknife avg. F.E. Jackknife avg.

Notes: Reports estimates of the main regression using either linear (cols. 1-2), binary (cols. 3-4), or log
(cols. 5-6) transformations of both the dependent and independent variables. Standard errors are in
parentheses and are clustered at the MeSH (m) level. The bottom two rows indicate the specification
of the mission (mj-level) and market (mt-level) controls. “Lag D.V.” indicates that a one-year lag of
the dependent variable is included to control for differences in journal missions, “F.E.” indicates that
fixed effects are used, and “Jackknife avg.” indicates that a same-year journal-jackknifed average of the
dependent variable is used to control for differences in topic markets.
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Table C.3: Alternative MeSH-Journal Samples

Full Ever In Ever In Ever In In Both
Sample Journal’s Editors’ Both Abv. p10

(1) (2) (3) (4) (5)

Panel (a): D.V. = SP
mjt

SE
mjt 0.230∗∗∗ 0.231∗∗∗ 0.230∗∗∗ 0.231∗∗∗ 0.231∗∗∗

(0.029) (0.030) (0.029) (0.030) (0.030)

Elasticity at means 0.230 0.227 0.232 0.229 0.229
Total R2 0.952 0.952 0.952 0.952 0.952
partial-R2, sci. homoph. 0.024 0.024 0.024 0.024 0.024
Obs., mjt 1,953,818 877,486 960,556 731,153 648,725

Panel (b): D.V. = 1{SP
mjt}

1{SE
mjt} 0.021∗∗∗ 0.023∗∗∗ 0.013∗∗∗ 0.019∗∗∗ 0.020∗∗∗

(0.001) (0.002) (0.001) (0.002) (0.002)

Elasticity at means 0.044 0.039 0.028 0.035 0.036
Total R2 0.611 0.530 0.574 0.529 0.519
partial-R2, sci. homoph. 0.001 0.001 0.001 0.001 0.001
Obs., mjt 1,953,818 877,486 960,556 731,153 648,725

Panel (c): D.V. = log(SP
mjt)

log(SE
mjt) 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗ 0.046∗∗∗

(0.004) (0.004) (0.004) (0.004) (0.004)

Elasticity at means 0.046 0.046 0.046 0.046 0.046
Total R2 0.803 0.803 0.803 0.803 0.802
partial-R2, sci. homoph. 0.001 0.001 0.001 0.001 0.001
Obs., mjt 224,224 224,224 224,224 224,224 223,543

Notes: Standard errors are in parentheses and are clustered at the MeSH (m) level. All specifications
include MeSH-journal (mj) and MeSH-year (mt) fixed effects. The column headers indicate which pairs
of MeSH topics and journals (mj) are included in the regression based on whether the MeSH term ever
appears in the journals’ and/or the editors’ publications. The last column includes only MeSH-journal
pairs where the average appearance of the MeSH term in both the journal’s and editors’ publications is
above the 10th percentile of the non-zero distribution.
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Table C.4: Alternative MeSH Hierarchy Aggregations

Level of MeSH Specificity
10% 25% 50% 75% 100%
(1) (2) (3) (4) (5)

Panel (a): D.V. = SP
mjt

SE
mjt 0.211∗∗∗ 0.228∗∗∗ 0.230∗∗∗ 0.234∗∗∗ 0.246∗∗∗

(0.044) (0.038) (0.029) (0.032) (0.032)

Elasticity at means 0.211 0.228 0.230 0.234 0.246
Total R2 0.967 0.961 0.952 0.949 0.949
partial-R2, mj-missions (γmj) 0.671 0.642 0.646 0.639 0.632
partial-R2, mt-markets (σmt) 0.237 0.205 0.155 0.155 0.157
partial-R2, sci. homoph. (SE

mjt) 0.024 0.025 0.024 0.023 0.023
Obs., mjt 38,819 355,675 1,953,818 4,937,169 8,317,602

Panel (b): D.V. = 1{SP
mjt}

1{SE
mjt} 0.001 0.023∗∗∗ 0.021∗∗∗ 0.020∗∗∗ 0.019∗∗∗

(0.017) (0.003) (0.001) (0.001) (0.001)

Elasticity at means 0.001 0.036 0.044 0.049 0.051
Total R2 0.737 0.733 0.611 0.543 0.521
partial-R2, mj-missions (γmj) 0.342 0.334 0.323 0.308 0.304
partial-R2, mt-markets (σmt) 0.134 0.120 0.115 0.114 0.112
partial-R2, sci. homoph. (SE

mjt) 0.000 0.001 0.001 0.001 0.001
Obs., mjt 38,819 355,675 1,953,818 4,937,169 8,317,602

Panel (c): D.V. = log(SP
mjt)

log(SE
mjt) 0.084∗∗∗ 0.069∗∗∗ 0.046∗∗∗ 0.034∗∗∗ 0.030∗∗∗

(0.019) (0.008) (0.004) (0.004) (0.004)

Elasticity at means 0.084 0.069 0.046 0.034 0.030
Total R2 0.915 0.864 0.803 0.818 0.823
partial-R2, mj-missions (γmj) 0.492 0.495 0.499 0.518 0.525
partial-R2, mt-markets (σmt) 0.166 0.214 0.274 0.329 0.356
partial-R2, sci. homoph. (SE

mjt) 0.004 0.002 0.001 0.001 0.000
Obs., mjt 31,910 96,142 224,224 242,541 242,724

Notes: Reports estimates of the main regression using alternative levels of specificity when aggregating
the MeSH hierarchy – smaller specificity values indicate the tree has been aggregated to broader topics. A
specificity of 100% indicates that no aggregation is performed, and the 50% specificity is the specification
used in all other tables and figures. Standard errors are in parentheses and are clustered at the MeSH
(m) level. All regressions include both journal mission and topic market fixed effects.
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Table C.5: Alternative Aggregation of Editorial Boards

Linear-Linear Binary-Binary log-log
Pub.-wgt. Person-wgt. Pub.-wgt. Person-wgt. Pub.-wgt. Person-wgt.

(1) (2) (3) (4) (5) (6)

SE
mjt 0.230∗∗∗ 0.232∗∗∗ 0.021∗∗∗ 0.021∗∗∗ 0.046∗∗∗ 0.040∗∗∗

(0.029) (0.032) (0.001) (0.001) (0.004) (0.004)

Elasticity at means 0.230 0.232 0.044 0.044 0.046 0.040
Total R2 0.952 0.952 0.611 0.611 0.803 0.803
partial-R2, mj-missions 0.646 0.630 0.323 0.323 0.499 0.509
partial-R2, mt-markets 0.155 0.153 0.115 0.115 0.274 0.274
partial-R2, sci. homoph. 0.024 0.025 0.001 0.001 0.001 0.001

Obs., mjt 1,953,818 1,953,818 1,953,818 1,953,818 224,224 224,224

Notes: Reports estimates of the main regression using either linear (cols. 1-2), binary (cols. 3-4), or log
(cols. 5-6) transformations of both the dependent and independent variables. Standard errors are in
parentheses and are clustered at the MeSH (m) level. Cols. 1, 3, and 5 reflect the main specifications
where the MeSH-shares of editorial boards are aggregated at the publication-level. Cols. 2, 4, and 6
reflect an alternative specification where the MeSH-shares of editorial boards are first aggregated at the
publication-level within each person, and then again at the person level.
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C.2 Heterogeneity

Effects by Publication Types

Our results thus far are based on MeSH share variables (SP and SE) that are derived from all types

of publications in journals and written by authors. However, the PubMed data does allow us to

make one major distinction in terms of the nature of these publications in that we can separate

“research articles,” as in the standard, peer-reviewed article that comprises most of these journals,

from other article types such as editorials, comments, and letters. These latter publications are

rarely peer-reviewed, but they do represent an opportunity for us to see if the effect we identify is

driven more by editors’ scientific expertise on certain topics per se (which we expect to be more

represented in research articles) or instead by their preferences or beliefs about which topics are

germane (which we expect to be relatively more represented in their non-research publications).

In Table C.6, we report results from separating both journals’ and editors’ publications into

research versus non-research types. Overall, it appears that the main effect we observe is driven

by editors’ research publications, and that the effect is relatively similar on both the research and

non-research publications in their journals. Had the scientific homophily effect been driven by

editors non-research publications, concern might be warranted regarding these preferences. But

given that it appears the effect is driven almost entirely by the research publications, we see this as

yet another piece of supporting evidence that the scientific homophily effect is likely not a first-order

cause for concern.

Effects over Time and by Topic Age

Figure C.2 reports the estimates we obtain when we allow the scientific homophily parameter to

vary by year. Regardless of the different sample inclusion criteria we use, we find evidence that, if

anything, the magnitude of the effect is declining over time to the point of not reaching statistical

significance. We lack a strategy for shedding light on why the effect may be declining over time.

Another temporal dimension along which one might expect to observe heterogenous effects

is the “age” of the topic at hand – are editors more or less likely to tilt journals’ towards their

research when the science is particularly new (or old)? We investigate this question by proxying

for a topic’s age based on the year it was introduced into the MeSH hierarchy, and allowing the

homophily effect to be a function of this age. Our results, reported in Table C.7, are not very

conclusive and generally do not reveal any consistent patterns. Our approach is limited by our data,

and is crude at best. Still, the fact that that no clear pattern emerges suggests that there are likely

no first-order differences along this dimension.
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Table C.6: Effects by Type of Publication: Research Articles vs. Other (e.g., Editorials, Letters)

SP
mjt, all SP

mjt, articles SP
mjt, other

(1) (2) (3)

SE
mjt, articles 0.214∗∗∗ 0.199∗∗∗ 0.259∗∗∗

(0.028) (0.026) (0.053)

SE
mjt, other 0.018 0.021∗∗∗ 0.023∗

(0.011) (0.008) (0.013)

Elasticity at means, articles 0.214 0.199 0.271
Elasticity at means, other 0.018 0.020 0.024
partial-R2, sci. homoph., articles 0.019 0.017 0.003
partial-R2, sci. homoph., other 0.001 0.001 0.000

Obs., mjt 1,953,818 1,953,818 1,953,818

Notes: Standard errors are in parentheses and are clustered at the MeSH (m) level.

Figure C.2: Year-specific Scientific Homophily Effect Estimates

0.0

0.2

0.4

0.6

Estimate

1970 1980 1990 2000 2010
Unbalanced, full sample Unbalanced, 1985-onward Balanced

Notes: Plots the point estimates and 95% confidence intervals from estimating the main regression
specification (incl. journal-mission and topic-market fixed effects), but allowing the scientific homophily
effect to vary by year. The “Unbalanced, full sample” includes all journal-years for which we obtained
data. The “Unbalanced, 1985-onward” is the sample used in all other regressions. The “Balanced” sample
includes all years from 1998 onward, since this is the earliest year we could obtain publication-matched
editorial data for all in-sample journals.
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Table C.7: Effects by Age of MeSH

Per min. Per mean Per max
(1) (2) (3)

SE
mjt × Young 0.215∗∗∗ 0.294∗∗ -0.046

(0.028) (0.126) (0.663)

SE
mjt × Middle 0.328∗ 0.215∗∗∗ 0.395

(0.197) (0.048) (0.299)

SE
mjt × Old 0.218∗∗∗ 0.235∗∗∗ 0.216∗∗∗

(0.029) (0.032) (0.021)

Total R2 0.952 0.952 0.952
Obs., mjt 1,953,818 1,953,818 1,953,818

Notes: Standard errors are in parentheses and are clustered at the MeSH (m) level. Each column
corresponds to an alternative statistic used to summarize the age of an aggregated MeSH term based
on the year each unique (non-aggregated) MeSH term within an aggregation was introduced into the
hierarchy. “Young,” “Middle,” and “Old” refer to roughly tercile-based splits of each statistic.

Table C.8: Citation-weighted Results

Linear-Linear Binary-Binary log-log
Raw Cite-wgt. Raw Cite-wgt. Raw Cite-wgt.
(1) (2) (3) (4) (5) (6)

SE
mjt 0.230∗∗∗ 0.114∗∗∗ 0.021∗∗∗ 0.016∗∗∗ 0.046∗∗∗ 0.037∗∗∗

(0.029) (0.030) (0.001) (0.001) (0.004) (0.008)

Elasticity at means 0.230 0.129 0.044 0.038 0.046 0.037
Total R2 0.952 0.898 0.611 0.588 0.803 0.691
partial-R2, mj-missions 0.646 0.568 0.323 0.318 0.499 0.364
partial-R2, mt-markets 0.155 0.113 0.115 0.112 0.274 0.261
partial-R2, sci. homoph. 0.024 0.003 0.001 0.000 0.001 0.000

Obs., mjt 1,953,818 1,953,818 1,953,818 1,953,818 224,224 192,930

Notes: Reports estimates of the main regression using either linear (cols. 1-2), binary (cols. 3-4), or log
(cols. 5-6) transformations of both the dependent and independent variables. Standard errors are in
parentheses and are clustered at the MeSH (m) level. Cols. 1, 3, and 5 reflect the main specifications
where the MeSH-shares are unweighted. Cols. 2, 4, and 6 reflect an alternative specification where the
MeSH-shares of publications are weighted by the number of forward-citations-per-year a publication
receives.
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Table C.9: Main Results using Affiliation Terms

(1) (2) (3) (4)

Panel (a): D.V. = SP
ajt

SE
ajt 0.707∗∗∗ 0.102∗∗∗ 0.478∗∗∗ 0.052∗∗∗

(0.057) (0.030) (0.057) (0.005)

Elasticity at means 0.707 0.102 0.478 0.052

Total R2 0.754 0.967 0.832 0.977
partial-R2, aj-missions 0.867 0.862
partial-R2, at-markets 0.315 0.288
partial-R2, sci. homophily 0.754 0.044 0.391 0.014
Obs., ajt 5,681,088 5,681,088 5,681,088 5,681,088

Panel (b): D.V. = 1{SP
ajt}

1{SE
ajt} 0.637∗∗∗ 0.064∗∗∗ 0.245∗∗∗ 0.020∗∗∗

(0.002) (0.001) (0.003) (0.001)

Elasticity at means 0.096 0.010 0.037 0.003

Total R2 0.087 0.551 0.409 0.602
partial-R2, aj-missions 0.508 0.315
partial-R2, at-markets 0.353 0.100
partial-R2, sci. homophily 0.087 0.001 0.015 0.000
Obs., ajt 5,681,088 5,681,088 5,681,088 5,681,088

Panel (c): D.V. = log(SP
ajt)

log(SE
ajt) 0.708∗∗∗ 0.075∗∗∗ 0.362∗∗∗ 0.050∗∗∗

(0.012) (0.003) (0.008) (0.003)

Elasticity at means 0.708 0.075 0.362 0.050

Total R2 0.435 0.888 0.786 0.929
partial-R2, aj-missions 0.803 0.665
partial-R2, at-markets 0.621 0.356
partial-R2, sci. homophily 0.435 0.006 0.198 0.003
Obs., ajt 214,197 214,197 214,197 214,197

Incl. γaj Y Y
Incl. σat Y Y

Notes: Standard errors are in parentheses and are clustered at the affiliation term (a) level. The
bottom two rows apply to all panels and indicate which columns are based on specifications that include
affiliation-journal (aj) and/or affiliation-year (at) fixed effects.
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